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Classification

@ Dataset looks like (z,,y,) € RP x {1,2,...,C},n=1,2,...,N
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Classification Il =

@ Dataset looks like (z,,y,) € RP x {1,2,...,C},n=1,2,...,N
@ We don't generally (C > 2) regress the target (Why not?)
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Classification

@ Dataset looks like (z,,y,) € RP x {1,2,...,C},n=1,2,...,N
@ We don't generally (C > 2) regress the target (Why not?)
@ In other words, we don't prefer MSE loss for learning

Dr. Konda Reddy Mopuri dl - 07/ Cross-Entropy Loss 2



26bab 0888 dend H0% PaTenl
Indian Institute of Technology Hyderabad

Classification Intuition

@ Target label y is one-hot encoded
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Classification Intuition I =

@ Target label y is one-hot encoded

@ It converts y to a pmf (p) (e.g., yn =2 — {0,1,0,0} and
yn =3 — {0,0,1,0} when C' = 4)
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Classification Intuition “ P

@ Target label y is one-hot encoded

@ It converts y to a pmf (p) (e.g., yn =2 — {0,1,0,0} and
yn =3 — {0,0,1,0} when C' = 4)

@ Hence, the DNN'’s prediction should also be a pmf (q)
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Classification Intuition “

@ Target label y is one-hot encoded

@ It converts y to a pmf (p) (e.g., yn =2 — {0,1,0,0} and
yn =3 — {0,0,1,0} when C' = 4)

@ Hence, the DNN'’s prediction should also be a pmf (q)

@ Loss function should compare p and q
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Very very brief discussion on related Information Theory

@ Information contained in an event x can be computed given the
probability of that event P(x)
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Very very brief discussion on related Information Theory

@ Information contained in an event x can be computed given the
probability of that event P(x)

@ Higher the P(x), lesser is the information (less ‘surprising’)
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Very very brief discussion on related Information Theory

@ Information contained in an event x can be computed given the
probability of that event P(x)

@ Higher the P(x), lesser is the information (less ‘surprising’)

@ Hence, the information can be calculated as I(x) = —loga2(P(x))
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Very very brief discussion on related Information Theory

@ Information contained in an event x can be computed given the
probability of that event P(x)

@ Higher the P(x), lesser is the information (less ‘surprising’)
@ Hence, the information can be calculated as I(x) = —loga2(P(x))

@ This is also the number of bits required to encode x
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Very very brief discussion on related Information Theory

@ Entropy is the number of bits required to encode a randomly chosen
message (x) from a probability distribution p(x)
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Very very brief discussion on related Information Theory

@ Entropy is the number of bits required to encode a randomly chosen
message (x) from a probability distribution p(x)

@ Expected amount of information in an event drawn from that
distribution H(X) = Eyp[I(z)]
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Very very brief discussion on related Information Theory

@ One message x needs —log(P(x)) bits
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Very very brief discussion on related Information Theory

@ One message x needs —log(P(x)) bits

@ There are multiple messages with associated probabilities — entropy

H(X) = =X P(x) - log2(P(x))
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Very very brief discussion on related Information Theory

@ One message x needs —log(P(x)) bits

@ There are multiple messages with associated probabilities — entropy
H(X) == P(x) - loga(P(x))

@ H(p) = —>;ipi-loga(pi)
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Very very brief discussion on related Information Theory

@ One message x needs —log(P(x)) bits

@ There are multiple messages with associated probabilities — entropy
H(X) == P(x) - loga(P(x))

@ H(p) = —>ipi - loga(pi)

@ Skewed distribution has less entropy, uniform/balanced distribution
has more entropy
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Very very brief discussion on related Information Theory

Shannon entropy in nats
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Entropy for a binary random variable

Figure credits Goodfellow et al. 2016
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https://www.deeplearningbook.org/
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Very very brief discussion on related Information Theory

@ Cross-entropy H(p,q) is the average number of bits required to
encode the messages from a source distribution p when encoded with
a different model ¢
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Very very brief discussion on related Information Theory

@ Cross-entropy H(p,q) is the average number of bits required to
encode the messages from a source distribution p when encoded with
a different model ¢

@ H(p,q) = —>;pi-loga(ai)
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Very very brief discussion on related Information Theory

@ Cross-entropy H(p,q) is the average number of bits required to
encode the messages from a source distribution p when encoded with
a different model ¢

@ H(p,q) = —>;pi - loga(a;)

@ Note that cross-entropy is not symmetric metric, i.e,
H(p,q) # H(q,p)
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Very very brief discussion on related Information Theory

@ Cross-entropy H(p,q) is the average number of bits required to
encode the messages from a source distribution p when encoded with
a different model ¢

@ H(p,q) = —>;pi - loga(a;)
@ Note that cross-entropy is not symmetric metric, i.e,
H(p,q) # H(q,p)

@ Cross-entropy between a distribution and itself (H(p, q)) gives the
entropy of the distribution H(p)
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Very very brief discussion on related Information Theory

@ KL-Divergence : average number of extra bits required to represent a
message with distribution ¢ instead of p
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Very very brief discussion on related Information Theory

@ KL-Divergence : average number of extra bits required to represent a
message with distribution ¢ instead of p

@ H(p,q) = H(p) + KL(pl|q) where KL(p||q) = > p; - log(’;ﬁ)
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Cross-entropy as a loss function W =

@ Widely used in classification problems (e.g. logistic regression, NNs)
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Cross-entropy as a loss function W =

@ Widely used in classification problems (e.g. logistic regression, NNs)

@ Each label is converted into a distribution with 1 and 0Os (one-hot
encoding)
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Cross-entropy as a loss function o = e

@ Widely used in classification problems (e.g. logistic regression, NNs)

@ Each label is converted into a distribution with 1 and 0Os (one-hot
encoding)

@ Model predicts the probabilities that sample belongs to different
classes
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Cross-entropy as a loss function

@ Random variable is the sample
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Cross-entropy as a loss function “ e

@ Random variable is the sample

@ Events are the classes/labels
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Cross-entropy as a loss function

@ Random variable is the sample
@ Events are the classes/labels

@ Target distribution (or, groundtruth) is one-hot encoding p, and
model predicts a distribution ¢
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Softmax

@ Typically last layer in the DNN classifier is linear (without a
nonlinearity)
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@ Typically last layer in the DNN classifier is linear (without a
nonlinearity)

@ Predicts the confidences to each class (may not lie in [0, 1])
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@ Typically last layer in the DNN classifier is linear (without a
nonlinearity)

@ Predicts the confidences to each class (may not lie in [0, 1])
@ But, we need probabilities
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@ Typically last layer in the DNN classifier is linear (without a
nonlinearity)

@ Predicts the confidences to each class (may not lie in [0, 1])

@ But, we need probabilities
@ Softmax operation

o squashes the predicted confidences to lie in [0, 1]

Dr. Konda Reddy Mopuri dl - 07/ Cross-Entropy Loss 12



26bab 0888 dend H0% PaTenl
Il mﬂﬁﬁmﬁwﬁ
ortmax T S e

@ Typically last layer in the DNN classifier is linear (without a
nonlinearity)

@ Predicts the confidences to each class (may not lie in [0, 1])

@ But, we need probabilities

@ Softmax operation

o squashes the predicted confidences to lie in [0, 1]
o make them probabilities (i.e. sum to 1)
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Cross-entropy | [

@ Target distribution p has 1 at the position of correct label and 0 at
rest of the components
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Cross-entropy | [

@ Target distribution p has 1 at the position of correct label and 0 at
rest of the components

@ H(p,q) = —> pi-log(q;) = —log(q.), where c is the groundtruth
class of the sample
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Cross-entropy | [

@ Target distribution p has 1 at the position of correct label and 0 at
rest of the components

@ H(p,q) = —> pi-log(q;) = —log(q.), where c is the groundtruth
class of the sample

@ The cross-entropy loss is

o small when the model predicts high probability to the groundtruth class
(QC ~1)
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Cross-entropy | [

@ Target distribution p has 1 at the position of correct label and 0 at
rest of the components

@ H(p,q) = —> pi-log(q;) = —log(q.), where c is the groundtruth
class of the sample

@ The cross-entropy loss is

o small when the model predicts high probability to the groundtruth class

(ge = 1)
o large if the model assigns smaller probability for the groundtruth class

(QC ~ O)

Dr. Konda Reddy Mopuri dl - 07/ Cross-Entropy Loss 14



v-oéw odas o »on Goend
B( : E et i

—— True value:1
35 —— True value:0

w
=]

B
5]

Binary Cross-Entropy Loss
=T R T
%] =} i =]

=
=]

Dr. Konda Reddy Mopuri dl - 07/ Cross-Entropy Loss 15



